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The coordination cluster theory (CCT) is extended
to ternary reciprocal molten salt solutions of one
component (AY) in dilute solution in a binary
solvent (AX —BX). Comparison with prior theories
of reciprocal systems leads to the identification of
the parameters in the CCT theory with quantities
which are measurable in the pure constituents and
in the four binary subsystems. Predictions of the
specific bond free energies for forming associated
species between Ag* and Cl~ or Br~ ions in
sodium and potassium nitrates are made. Although
the absolute values of these predicted energies are
15—20Y, smaller than experimental values, they
have the correct relative values for different species
in a given solvent and between different solvents
for the same species. The CCT theory provides a
basis for making predictions of association
energies and for correlating and understanding the
energetics of association in dilute reciprocal salt
solutions.

I. INTRODUCTION

Ion association appears to be an important
phenomenon in dilute reciprocal molten salt
solutions. Measurements by electromotive force
measurements ! 8 and cryoscopy ! "!! have been
used to identify the associated species. The
rationalization of the thermodynamic properties of
the associated species, especially of the association
constants and their temperature dependence, has
been investigated by means of several theoretical
models.!''213 However, the energetics of the
association process remained unclear in the sense
that there was no unified physical theory for the
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energy change accompanying the formation of an
associated ionic species.

In this paper, we utilize a new theoretical
approach, the coordination cluster theory!#1!®
(CCT) to examine the energetics of association in a
system consisting of B* and Y~ ions in dilute
solution in a solvent consisting of A* and X~ ions.
The CCT was first derived for substitutional and
interstitial alloys;'#!5 the activity coefficient of the
solute was shown to be a function of the
thermodynamic properties of the solvent, once the
interactions of the solvent atoms in the
coordination shell of the solute were modeled.

The extension of the CCT to ionic reciprocal
systems is presented; the equation obtained for the
activity coefficient of the dilute solute is compared
to equations derived from prior theories.!?-16~ 18
The identification of the energetic parameters for
the ionic association process is made possible by
this comparison. The predicted values of the
energetics of association in the case of Ag* with
Cl™ or Br™ in alkali nitrate solvents are compared
with available experimental results.

II. APPLICATION OF THE COORDINATION
CLUSTER THEORY TO IONIC SYSTEMS

As mentioned earlier, the CCT was developed
for metallic systems.**5 The dependence of the
activity coefficient of a solute C in dilute solution in
a binary solvent A—B, on the composition of the
solvent, is described in terms of atomic associations
and involves (1) the limiting activity coefficient of C
in pure A, yc() and in pure B, y¢@); (2) the atom
fractions of the solvent components, X, and Xg;
and (3) the activity coefficients, y, and yg. The
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relation (1) was obtained, where Z is the
coordination number of the solute C, t is a
geometric parameter (t >1/Z), and gF is an excess
Gibbs free energy of mixing of i atoms B and (Z —i)
atoms A present in the coordination shell of C, i.e.,
in a typical configuration C(A,_;B)).
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There is no rigorous thermodynamic derivation
for g%. Several heuristic approximations for g¥ have
been proposed. A simple equation was used first by
Wagner,'? who implicitly assumed that the A and B
atoms “a regular solution” in the

form “a
coordination shell, eqn. (2), where h is an energy

gf = Z—ih/2 )]

parameter. The “specific bond free energy” for
bonding the ith B atom to a C atom, AA,, is related
to h through eqn. (3).

RT
AA., = —Z—ln[')’c(n)/vch\)] -
—tRTIn[yg/p,] +(Z —2i + 1)h/2 ©

The extension of the above equations to ternary
molten salt systems can be directly made for
additive systems schematically represented by (A™,
B*, C*/X")or (A*/X~, Y™, Z7). For reciprocal
systems, eg., (A", B*/X~, Y "), the extension is not
as straightforward. If AX —BX is considered as a
solvent and Y is a hypothetical gaseous solute, one
can define the exchange equilibria (4) and (5), where

Y(g)+AX()=AY() +X(g), AG; )
Y(g)+BX()=BY()+X(g), AG; )

g refers to gas, 1 to liquid, and AG? and AGy, to the
standard Gibbs free energy changes of reaction (4)
and (5), respectively. The activity coefficient, yy, of
the solute Y can be readily derived from eqgn. (1):
eqn. (6).

Z 2 XaVax V2~ XaYhx
07" = 2 ﬂ(Z—:)'( vz ("Z >x

Py(ax) YY(Bx)

exp[— g;] 6)

The terms, yy(ax, and yygx) represent the limiting
activity coefficients of Y in pure AX and BX,
respectively, y,x and pgy represent the activity
coefficients of AX and BX in the AX — BX systems,
respectively.

The ion fractions of A and B, X, and Xp, are
defined by eqn. (7), where N, and Ny are the

Na Ny
A= and X =
N,+Ny N,+Ng

™

numbers of mol of A and B, respectively. The
quantities g and AA,; are defined by equations
identical to eqns. (2) and (3), with the subscripts, A,
B, C(A) and C(B), replaced with AX, BX, Y(AX) and
Y(BX), respectively. The limiting activity
coefficients, yy(sx) and yygx), are related to AG; and
AGq by eqns. (8) and (9).

RTInyyax)=AG; + RTIny,yax) (8)
RTInyygyx) = AGp+ RT In ygy gy, 9)

where 7,y ax, represents the activity coefficient of
AY at infinite dilution in pure AX and ygy@y
represents the activity coefficient of BY at infinite
dilution in pure BX.

The quantity RT In y, as derived from eqn. (6)
can be rationalized as the standard Gibbs free
energy change for the process (10), where n is a

Y +n(AX —BX)— X +n(solution) (10}

large number of the order of Avogadro’s number,
and the solution is defined as containing (n — 1) mol
of X and one mol of Y.

III. DISCUSSION

In this section, we compare the results derived
from the CCT for reciprocal ternary molten salt
systems with equations obtained from various
models and theories. In addition, nonrandom
mixing and association in dilute solution are
discussed. Finally, the values calculated for the
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specific bond free energies from the CCT for
selected illustrative systems are compared with
experimental data.

a. Comparison with prior theories and models. In
order to compare the CCT with prior molten salt
theories, one has to consider the process (11),

AY +n(AX — BX)— AX + n(solution) (11)

which is the difference between reactions (10) and
(4). Consequently, the standard Gibbs free energy
change for reaction (11), AGY, is given by eqn. (12),

AG; =RTInypy—AG; = RTIn(y,y/Yax) (12)

where v,y refers to the activity coefficient of AY in
the ternary reciprocal system. Thus, one has eqn.
(13).

RTIny,y =RTIny,x+RTIny, —AG; (13)

By expanding RT In y,, as derived from eqn. (6) in a
power series in X, and Xy up to the second-order
in ion fractions, the expression (14) is obtained,

RT In y,y = — XgAG° +ZtXy In (y5x/78x) +
+ RT(X 5 In Yy(ax) + X5 In Ypyex) +
XaXp

2ZRT
[AG®+ZtRTn (ygx/7ax) +

+ RT 10 y5yax)— RT In ygygx)1? (14)

+Z(Z—-1)X X gh/2 —

where AG° is the standard Gibbs free energy
change for the reaction (15). Eqn. (14) incor-

AX + BY =AY + BY (15)
AG°® = AG: - AG; (16)

porates terms present in the corresponding rela-
tion derived from the conformal ionic solution
(CIS) theory.!® For solutions dilute in Y~ the
activity coefficient of AY deduced from the CIS
theory !® is given by eqn. (17), which contains only

RTIn y,y = — X3AG° + X (X5 — X )Ax +
+ X Ay + Xpdg + Xy Xphy — X, Xy
(AG°? ,

2ZRT
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second-order terms. The first term on the right
hand side of eqn. (17) has been derived in the
pioneer work of Flood, Ferland and Grjotheim;!”
the next four terms were deduced by Forland '8
based on a random mixing model. The coefficient 4;
is an energy parameter for a quadratic
representation of the Gibbs excess free energy of
mixing of a binary system where i is the common
ion, eg., in the AX—BX system AGE(AX—BX)
= A X ,Xg. Eqn. (17) applies rigorously to those
reciprocal systems in which the excess Gibbs free
energy of mixing of the binary subsystems can be
described by a quadratic representation.

The comparison of eqns. (14) and (17) permits
one to identify terms such as h and t and in addition
leads to a generalization of the CIS equations.

The first four quantities on the right hand side of
eqn. (14) are exactly identical to the first five
quantities on the right hand side of eqn. (17) if Ay =
Z(Z—-1)h/2, if t=1/Z, and if the excess Gibbs free
energies of three of the binary subsystems can be
represented by a quadratic expression in the
corresponding ion fractions, ie, AGE(AX—BX)
=AxXaXs, RTInysyaxy=4a and RTInypyeyx,
= Ag. However, the equation derived from the CCT
for RTIny,y is valid for any thermodynamic
formulation of the binary subsystems, even when
strong associations exist (i.e., large deviations from
random mixing). This point is a considerable
advantage in comparison with the CIS equations.
Even the expanded form of the CCT equation, eqn.
(14), contains a more complete description of the
nonrandom mixing contribution than does eqn.
(17). Additional terms are in the last bracketed term
in eqn. (14) and can be obtained from the CIS
theory if higher-order terms in the perturbation
calculations *¢ are considered. The importance of
the more complete description of the nonrandom
mixing contribution as formulated from the CCT
[eqns. (6), (8), (9) and (13)] stems from the fact that
one can accurately describe ionic association.

b. Nonrandom mixing in dilute solutions. In the
limiting case where X, approaches zero,
associations occur between the B* and Y~ ions to
form various associated species such as in eqns.
(18)—(20).

B* +Y™ =BY, K,, (18)
BY+Y =(BY,) , K,, (19)
BY +B*=(B,Y)", K, (20)

etc. -
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Each species, (B,Y;)*“"? is characterized by an
association constant K. The above equilibria
should be viewed within the context of the CCT; B*
refers to the configuration B(X,) where Z ions X
are the nearest neighbors of B; BY refers to the
configuration B(X,_,,Y) where (Z—1) ions X and
one ion Y occupy the first coordination shell of B;
finally Y™, (BY,)” and (B,Y)" designate the
configurations Y(A;), B(X,_,Y,) and Y(A,_,B,),
respectively.

The association constants K, K, and K,, are
related to parameters in the CCT through eqns.
(21)—(23),37'° where the quantity f;; is related to

K, =Z(ﬁ11_1) (21)
Z(Z-1)

KKy = 5 (ﬁ11ﬁ12_2ﬂ11+1) (22)
Z(Z-1)

Kusz =—’2—(ﬁnﬁzl“2ﬁn+1) (23)

the “specific bond free energy” in dilute solutions
in AX, A4;; by eqn. (24).

—RTInf,; = AAj, (24)

When j=1, A4}, is given by eqn. (3) where the
concentration of B* ions is very low, Xz~0.
Keeping in mind that, in this case, h and t are
identified with 24,/Z(Z — 1) and 1/Z, respectively,
eqn. (3) becomes eqn. (25). Thus, as Xy and X,

RT RT
Ay = Z In [yy@x)/Pvaxd — 7z In [ygx/vax]
+AUZ—-2i+1)/Z(Z-1) (25)

approach zero and AY is the solute, one has eqn.
(26). The quantity A4, defined as lim(AA)xg-o i

AA} = AAY, - 2i- DAy/Z(Z-1) (26)

AA3, = Ay/Z—(RT/Z)In [VBxaxy?vax)/ ?Y(Bx)]
= (—AG +Ay+Ag—Aa—Ay)/Z 27)

given by eqn. (27) where yyax) and yyx, are defined
by eqns (8) and (9), respectively, and ypxx, is the
activity coefficient of BX at infinite dilution in AX
and is the limit of the ratio (ygx/yax) as Xg—0. The
quantity AA{; is constant. If BX is the solute in the
binary solvent AX—AY dilute in AY, it can be

shown that:
AAT; = (AAT,) —2(— D)Ag/Z(Z 1) (28)

where (AA43,) is given by eqn. (29).

(AAL)'=U~B—AG°)/Z_

(RT/Z) In [yavaxyPexaxy/Veviav)] =
(—AG°+Ag+Ay—Ax—1,)/Z=AA}, (29)

c. Comparison with experimental data. In what
follows, measurements of association constants of
silver and halide ions in molten nitrates are
reviewed for some ternary reciprocal systems.!** =7
Also, the specific bond free energies AA; are
calculated using the CCT [eqns. (26)—(29)] for a
value of Z=4.

In Table 1, the values of the thermodynamic
coefficients needed for calculations in the systems
(Na,Ag/NO,.Cl), (K.Ag/NO,Cl), (Na,Ag/NO,,Br)
and (K,Ag/NO,,Br) are grouped. The interaction
coefficients, A of the four binary subsystems are
derived assuming that the excess Gibbs free energy
of mixing is a quadratic function of the ion
fractions.?® The values for 1,, are the most
uncertain as pointed out by Lumsden.?° Some
measurements indicate very negative values
whereas other more likely results yield values
which are zero or slightly negative. In the
calculations, a value of zero has been chosen,
although one must be aware of the uncertainty.
Finally for Z=4, values of (AG°/Z) are given in
Table 1 as deduced from measurements.?*-22 This
ratio is, of course, independent of solution effects
and by coincidence is the same for NaNO, and
KNO, in the bromide systems.

By use ofeqns. (26 —29),AA{,,AA], and AA4,, are
calculated and compared with the experimental
values for the associations of Ag* with Cl~ and
Br~ in NaNO, and KNO; solutions. The
calculated values (grouped in Table 2) have the
correct relative values, with the values for the
chlorides being closer to the experimental data
than those for the bromides; the fact that specific
bond free energies AA7, and AAS, are equal stems
from the fact that A,,=0. The somewhat large
difference between measured and calculated values
for AA]; (Table 2) might be related to the perhaps
too simple approximation for AA7, in egn. (27) and
for gF in eqn. (2).
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Table 1. Thermodynamic parameters for some reciprocal molten salt systems ® (kcal mol ™ 1).

System A Aag Ao, Ay AG°/Z
(Na,Ag|NO,,Cl) 0.40 0 0.68 0.90 44
(K,Ag]NO,,Cl) 0.21 0 —0.60 ~220 48
(Na,Ag|NO,,Br) 0.36 0 0.68 1.05 5.5
(K,Ag/NO,,Br) 0.12 0 ~0.60 —148 55

“The interaction parameters 4, are taken from Lumsden.?° The subscript A refers to either Na or K, and the subscript Y
refers to either Cl or Br depending on the system. AG° refers to the standard Gibbs free energy change for reaction (15) and

Z=4. (1 kcal =4.184 kJ).

Table 2. Measured and calculated specific bond free energies in some reciprocal molten salt systems (kcal

mol™?).

System —AA7, —AA3, —AA3, Ref.

(Na,Ag|NO;,Cl) 5.10 5.10 (5.0)° 4
44° 4.4° 4.5°

(K,AgINO,,Cl) 6.14 6.1 5.8 5
53% 5.3° 48°

(Na,Ag|NO;,Br) 6.74 6.7 6.9 6
5.5% 5.5% 5.8°

(K,Ag|NO,,Br) 7.40 74 7.1 7
5.8% 5.8% 5.5%

9 Parentheses refer to an estimate value. ® Calculated values for Z=4.

However, the solvent effect on values of A47, and
on differences between A43; or AA47, and AA4], is
predicted by the CCT equations even though the
absolute magnitudes are smaller than the
experimental values. For example, since the
experimental values for 1,, are zero or slightly
negative, the expectation is that A47, ~ AA47,. This
expectation is consistent with values in Table 2.
Values of 1, in the KNOj; solvents are negative,
leading to the expectation that, as observed,

51> AA], in this solvent. On the other hand,
values of iy are fairly positive in the NaNO,
solvents, leading to the expectation that AAS,
<AAj,, which could be true within the
uncertainties in the data.

Thus, however crude the different approxim-
ations, they have provided a means for correlating
and understanding relative values of interaction
energies (specific bond free energies) for
association in dilute solutions, as well as a
framework for future work. A more accurate
representation can be developed in the future as a
larger more coherent body of data becomes
available for analysis.
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IV. CONCLUSION

The coordination cluster theory provides a
framework for describing and understanding the
energetics of association in dilute reciprocal salt
solutions. An approximation of the quantity gF
permits one to identify all the energetic terms in the
theory with measurable quantities. Relative values
of the “specific bond free energies” for different
associated species and the relative solvent effects
are correctly predicted, and even the absolute
values are indicative of the strength of bonding of
the species considered. Much better correlations
with all data would be obtained if the coordination
number were considered to be an adjustable
parameter.

In order to fully understand the energetics of
association, one must ultimately analyze a larger
body of data and introduce approximations for
bond energies which are based on more
fundamental principles deduced from quantum
mechanics, rather than the heuristic approxi-
mations used here. Nevertheless, the equations
discussed appear to be potentially useful for
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making predictions in ternary reciprocal systems
based on data in lower order systems (i.e., pure salts
and binaries). Further testing of these predictions is
needed in order to define their range of
applicability and to provide a basis for future
theoretical studies of bond energies of solution
species.
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